organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Zhi-Ping Yang,‡ Ping Zhong,* Mao-Lin Hu, Shu-Yan Li and Ri-Yuan Tang

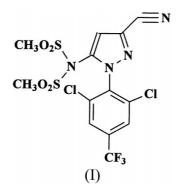
Department of Chemistry, Wenzhou Normal College, 325027 Wenzhou, People's Republic of China

Present address: Zhangzhou Vocational and Technical College, Zhangzhou, People's Republic of China.

Correspondence e-mail: zhongp0512@163.com

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.005 Å R factor = 0.049 wR factor = 0.135 Data-to-parameter ratio = 13.3


For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1-[2,6-Dichloro-4-(trifluoromethyl)phenyl]-5-[(dimethylsulfonyl)amino]-1*H*-pyrazole-3-carbonitrile

The title compound, $C_{13}H_9Cl_2F_3N_4O_4S_2$, is a bicyclic sulfonated amide with an overall U-shape, each of the two rings being planar.

Comment

The title compound, (I), has been used to synthesize 5-amino-3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-(trifluoromethyl)thiopyrazole, 5-amino-3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-(trifluoromethylsulfenyl)pyrazole and 5-amino-3-cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-(trifluoromethylsulfonyl)pyrazole. All of these compounds were found to be good insecticides (Hatton *et al.*, 1993).

The molecular structure of (I) is shown in Fig. 1, and selected geometric parameters are given in Table 1. The molecule has an overall U-shape. The dihedral angle between the mean planes through the pyrazole ring and the benzene ring is $73.2 (1)^{\circ}$.

In the crystal structure of (I), the molecules stack along the a axis, as shown in Fig. 2.

Experimental

Following the method of Hatton *et al.* (1993), 2,6-dichloro-4trifluoromethylamine was reacted with a suspension of nitrosyl sulfuric acid, followed by reaction with a solution of ethyl 2,3dicyanopropionate in acetic acid. This reaction gave 5-amino-3cyano-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]pyrazole, which was then reacted with two equivalents of methanesulfonyl chloride in pyridine to give (I). Single crystals suitable for X-ray analysis were obtained by slow evaporation of an acetone solution (m.p. 505– 507 K). IR (KBr, cm⁻¹): 3146, 3075, 2252, 1537, 1378, 1365, 1319, 1171, 1136; ¹H NMR (CDCl₃, p.p.m.): 8.12 (s, 2H), 7.70 (s, 1H), 3.54 (s, 6H); ¹³C NMR (CDCl₃, p.p.m.): 137.1 (1 C), 136.6 (1 C), 135.5 (1C), 127.9 (1C), 127.5 (2C), 127.4 (2C), 123.2 (1C), 114.6 (1C), 113.2 (1C), 42.8 (2C).

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved Received 7 December 2004 Accepted 7 December 2004 Online 18 December 2004

Crystal data

 $\begin{array}{l} C_{13}H_9Cl_2F_3N_4O_4S_2\\ M_r = 477.26\\ Triclinic, P\overline{1}\\ a = 8.4681 \ (7) \ \mathring{A}\\ b = 8.9652 \ (8) \ \mathring{A}\\ c = 14.3497 \ (12) \ \mathring{A}\\ \alpha = 75.198 \ (2)^{\circ}\\ \beta = 87.918 \ (1)^{\circ}\\ \gamma = 65.395 \ (1)^{\circ}\\ V = 954.57 \ (14) \ \mathring{A}^3 \end{array}$

Data collection

Bruker APEX area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2002) $T_{min} = 0.786, T_{max} = 0.866$ 5126 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.136$ S = 1.043400 reflections 255 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

Cl1-C4	1.724 (3)	N1-C5	1.427 (3)
S1-N4	1.729 (2)	N2-C10	1.330 (4)
S1-C12	1.757 (3)	N3-C11	1.136 (4)
S2-N4	1.705 (2)	C1-C2	1.496 (5)
S2-C13	1.752 (4)	C8-C9	1.360 (4)
F1-C1	1.254 (5)	C8-N4	1.414 (4)
N1-N2	1.341 (3)	C9-C10	1.398 (4)
N1-C8	1.375 (3)	C10-C11	1.435 (4)
O1-S1-N4	105.04 (12)	C9-C8-N1	106.9 (2)
O1-S1-C12	110.46 (16)	C9-C8-N4	130.4 (2)
N4-S1-C12	102.93 (15)	N1-C8-N4	122.7 (2)
N2-N1-C8	111.8 (2)	C8-C9-C10	104.3 (2)
N2-N1-C5	117.6 (2)	N2-C10-C9	112.7 (3)
C8-N1-C5	130.5 (2)	N2-C10-C11	119.8 (3)
C10-N2-N1	104.2 (2)	C9-C10-C11	127.5 (3)
F1-C1-F3	111.1 (4)	N3-C11-C10	178.6 (4)
F1-C1-C2	113.8 (3)	C8-N4-S2	116.78 (19)
C3-C2-C1	118.3 (3)	S2-N4-S1	117.75 (13)
C4-C3-C2	119.2 (3)		

Z = 2

 $D_x = 1.660 \text{ Mg m}^{-3}$

Cell parameters from 2990

Mo $K\alpha$ radiation

reflections

 $\begin{array}{l} \theta = 2.6 {-} 25.2^{\circ} \\ \mu = 0.62 \ \mathrm{mm}^{-1} \end{array}$

T = 298 (2) K

 $R_{\rm int}=0.012$

 $\theta_{\text{max}} = 25.3^{\circ}$ $h = -10 \rightarrow 10$

 $k = -10 \rightarrow 7$

 $l = -16 \rightarrow 17$

Block, colourless

0.41 \times 0.28 \times 0.24 mm

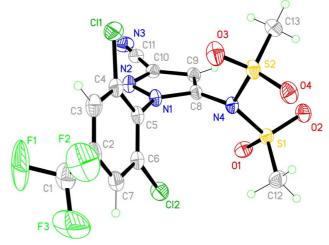
3400 independent reflections

 $w = 1/[\sigma^2(F_o^2) + (0.0723P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

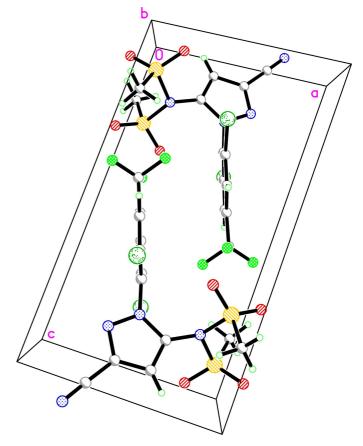
+ 0.9462P]

 $\Delta \rho_{\rm min} = -0.57 \text{ e} \text{ Å}^{-3}$


 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 1.00 \text{ e } \text{\AA}^{-3}$

3039 reflections with $I > 2\sigma(I)$

All H atoms were initially located in a difference Fourier map and were then placed in geometrically idealized position and constrained to ride on their parent atom, with C–H distances in the range 0.93–0.96 Å and $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$ or $1.5U_{\rm eq}({\rm C})$. Although the F atoms display large displacement parameters, no disorder model could be defined.


Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *XP* in *SHELXTL* (Bruker, 2002); software used to prepare material for publication: *SHELXTL*.

This work was supported by the National Natural Science Foundation of China (No. 20272043) and the Natural Science Foundation of Zhejiang Province (No. M203001).

Figure 1

The structure (I), showing the atomic numbering scheme and displacement ellipsoids at the 50% probability level.

Figure 2 The unit-cell contents for (I), viewed down the b axis.

References

- Bruker (2002). SMART, SAINT, SADABS, XP and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hatton, L. R., Bunain, B. G., Hawkins, D. W., Parnell, E. W., Pearson C. J. & Roberts, D. A. (1993). US Patent No. 5232940.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.